
Water Quality Trading for Temperature & Nutrient Compliance: A Turn-key Solution

Presentation to Upper Neuse River Basin Association June 2, 2015

Alex Johnson, Senior Freshwater Solutions Director

The Freshwater Trust

A 501(c)(3) non-profit organization with a 32-year history of actively working to preserve and restore freshwater ecosystems.

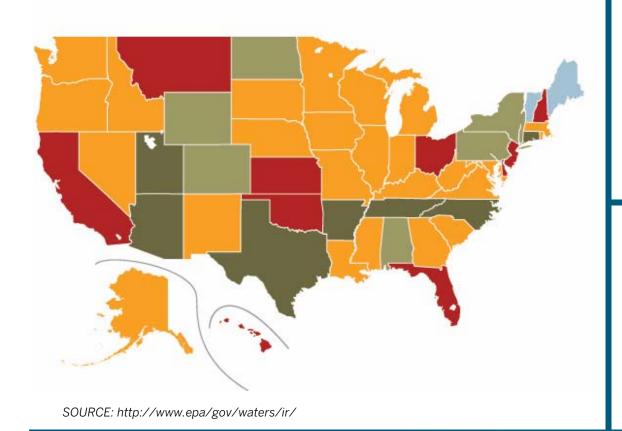
Habitat & Flow Restoration

Restoring stream, off-channel and riparian habitat to improve functional conditions for fish.

Ecosystem Accounting & Analysis

Measuring ecosystem services and translating them into units that make sense in a regulatory context.

Credit Program Management


Applying compliance-driven investments to needed habitat and water quality improvements.

Water Trends

Impaired Waters in the United States

under Section 303(d) of the Clean Water Act

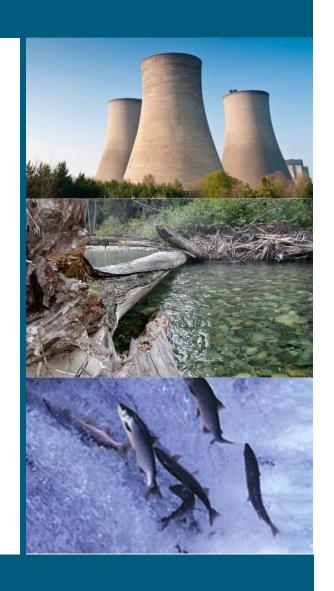
Percentage of assessed rivers and streams reported to EPA as "impaired" or "threatened" water quality.

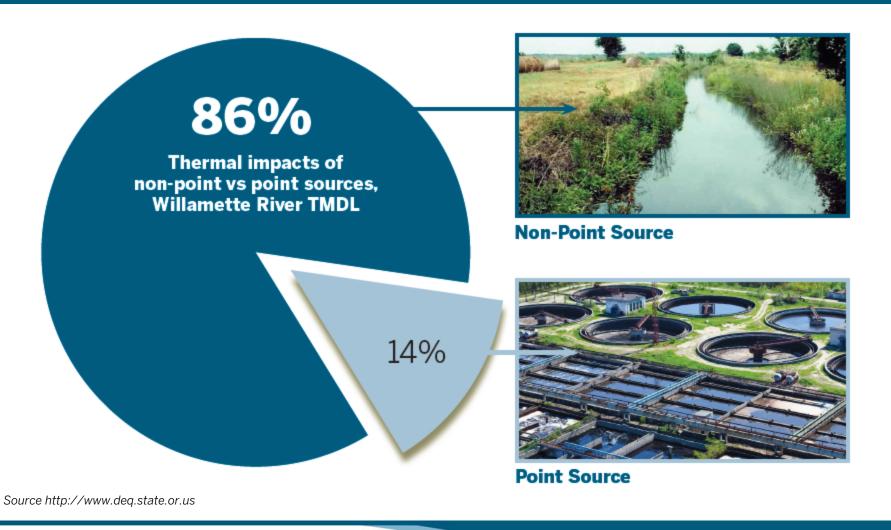
0% - 10%

■ 10% — 30%

30% - 50%

50% - 80%


80%+



Existing Conditions

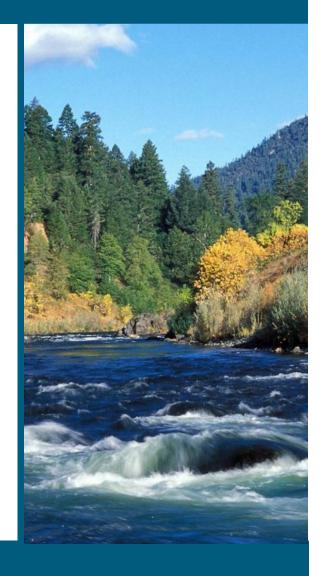
- → CONSERVATION REACTS to environmental challenges at a small scale (fish, wildlife, water quality, etc.), after degradation
- → REGULATORY DRIVERS are present on small percent of overall impacts
- → TECHNOLOGICAL SOLUTIONS employed by regulated entities are appropriate for some, but not all, new parameters

New Approaches to Meet NPS Challenge

Three Keys for Restoration to Work

For restoration to be viable compliance alternative...

CLEAR AUTHORITY:

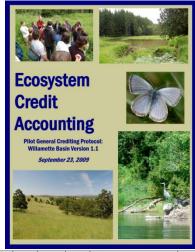

→ Regulators must adopt and promote required rules

CLEAR FRAMEWORK:

 Approved standards and protocols for measuring ecosystem services and implementing credit generating projects

CLEAR ROLES:

→ Third parties willing to assure delivery of compliance-grade credits with secure, turn-key projects



Regulatory Framework

Credit protocols from the Willamette Partnership, a third-party verifier of credits

- **General Crediting Protocol** for water quality trading
- **KTAP Protocols** for approved quantification methods for temperature and nutrients in the Klamath River

http://willamettepartnership.org/market-tools-rules/water-quality/klamath-trackingand-accounting-program/

Step	Step #	Project Developer	Administrator	Investor	Methods, Forms & Instructions	Klamath TAP Products
Select & Validate Project Site	P1	•	•		Self-Validation Checklist	Notice of Validation
Implement Project & Calculate Benefit	P2	•	_	_	Field Datasheets, Benefit Release Schedule	Quantified Estimate of Ecosystem Benefits
Verify Conditions	Р3	•	•		Verification & Monitoring Report, Agency Certification Form	Verified Project
Register & Issue	P4	•	•		Verification & Monitoring Report	Issued Ecosystem Benefits
Track & Transfer	P5		•	•	Approval of Transfer Form	Project Report & Defined Ownership of Ecosystem Benefits

■ Indicates a necessary or active role

□ Indicates potential participations or a support role

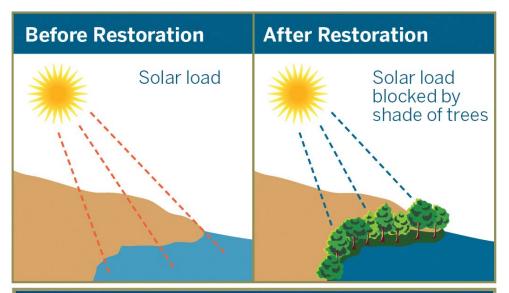
Policy Foundations

Regional Recommendations for the Pacific Northwest on Water Quality Trading

Joint statement from ID, OR, and WA agencies (with EPA Region 10) that defines recommendations for implementing water quality trading.

http://willamettepartnership.org/success-stories/regional-recommendations-water-quality-trading/

Trading Programs Require Additional Steps


Traditional Restoration Steps	Compliance-Grade Credit Generation Steps		
Identify project site	Identify project site		
Fundraising	Financing		
	Negotiate 20+ year contract with landowner		
	Collect pre-project data		
Project design	Project design		
	Estimated credit values		
Implement	Implement		
	Verification that implementation meets standards		
	Certification that credits meet accounting protocols		
	Credit registration		
Monitoring and maintenance (Years 1 – 3)	Monitoring and maintenance (Years 1 – 3)		
	Monitoring and maintenance (Years 4 – 20)		
	Annual payments to landowners (20+ years)		

Transaction Process

Temperature Model

Solar Load Avoided				
Before (pre-project)	10,000,000			
After (post-project)	4,500,000			
UPLIFT	5,500,000 kcals/day			
Sample conservation actions	Plant streamside vegetation			

- → Solar radiation is measured pre- and post- project implementation
- → Reductions in solar radiation are the result of increased canopy cover for riparian revegetation or reduced channel surface area in channel modification projects

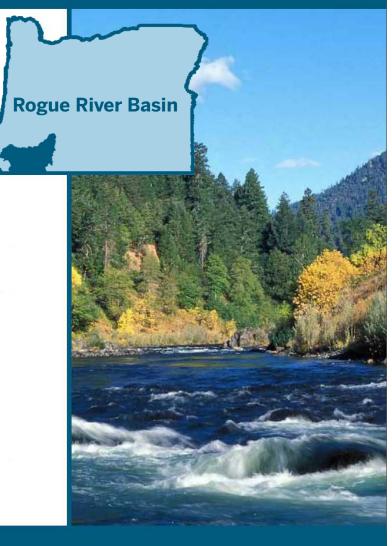
Case Study: Medford, OR

Buyer: City of Medford (population 170,000) **Seller:** 20+ landowners in Rogue River Basin

Contractor: The Freshwater Trust

Driver: Projected excess heat under TMDL limits:

300 million kcals/day in 10 years


Options:

→ Giant holding pond to store water for 1 month of each year: \$16 million

→ 10-15 miles of native riparian vegetation restored and maintained for 20 years: \$6.5 million

With trading program for riparian revegetation:

- Money pays local restoration contractors
- → Farmers get annual lease payments
- → Restoration = 20 jobs per \$1 million spent
- → Facility achieves compliance

Nutrient Model

Nutrient & Sediment Reduction				
	Phosphorus	Nitrogen	Sediments	
Before (pre-project)	10	100	2,000	
After (post-project)	5	25	100	
UPLIFT	5 lbs/yr	75 lbs/yr	1,900 lbs/yr	
Sample conservation actions	Plant streamside vegetationImplement cover cropsLivestock exclusion			

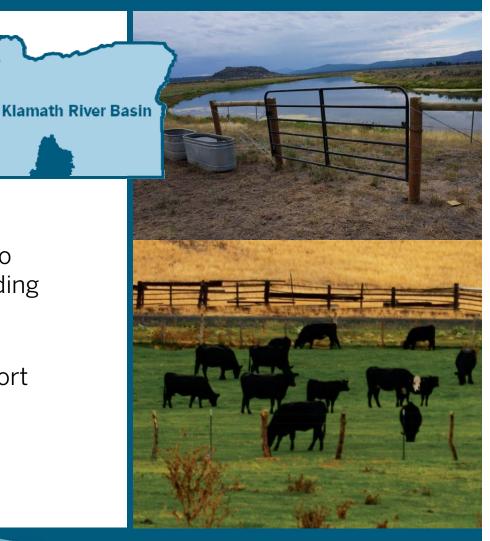
- Nitrogen, phosphorus and sediment load reductions are modeled by comparing preproject conditions of a field to modeled conditions after restoration or changed farm practices
- Assess impact of sitelevel restoration as a component of a basinscale water quality problem

Case Study: Klamath Basin, OR

Buyer: PacifiCorp

Seller: 1 landowner

Contractor: The Freshwater Trust


Driver: Klamath Hydroelectric

Settlement Agreement

Goals of Pilot Project:

→ ½ mile of livestock exclusion fencing to reduce phosphorus and sediment loading and reestablish riparian zone

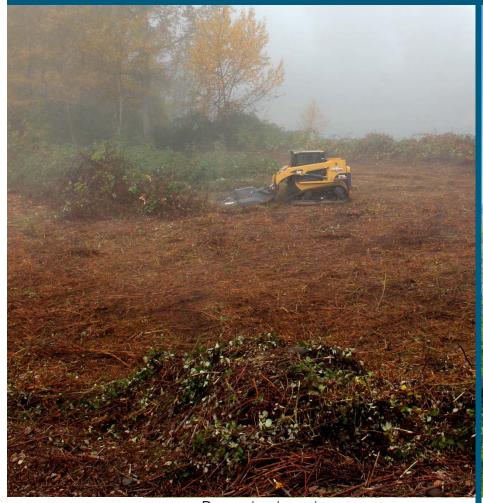
→ Part of a suite of regional actions to improve degraded water quality, support fish habitat and reduce algal blooms

Calculations & Quantification

- Modeling regulatory policy outcomes
- Permitting calculations& projections
- Natural alternatives to end of pipe
 - → Program costs
 - → Implementation & billing schedules
 - → Logistics & supply chain
- Building compliance portfolios

Prioritization, Design & Contracting

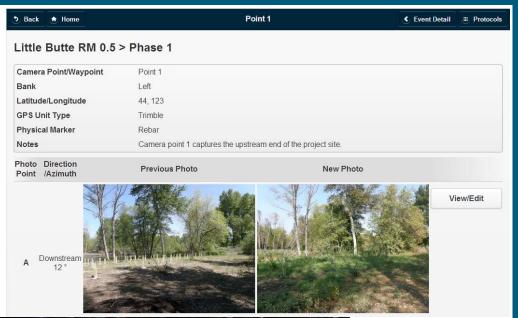
- Program design and site prioritization
 - → Local & ecological priorities
- → Contracting leases with public & private owners
- → Site design based on reference conditions, quality standards & best professional judgement


Degraded Conditions

Riparian Planting

Project Implementation

Removing invasives



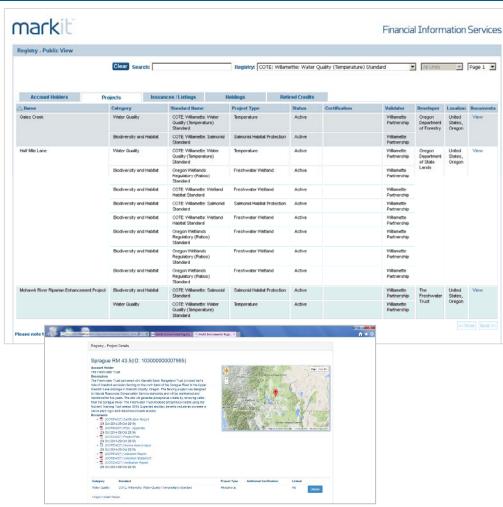
Planting natives

Calculating Credits: Example Ledger

Credit Type	Pre-project	Post-Restoration	Reduction
Temperature (kCals/day)	56,246,205	41,726,475	14,519,730
Phosphorus (lbs/year)	6	1	5
Nitrogen (lbs/year)	103	12	91
Sediment (lbs/year)	8,243	3,331	4,912

Monitoring: Performance & Transparency

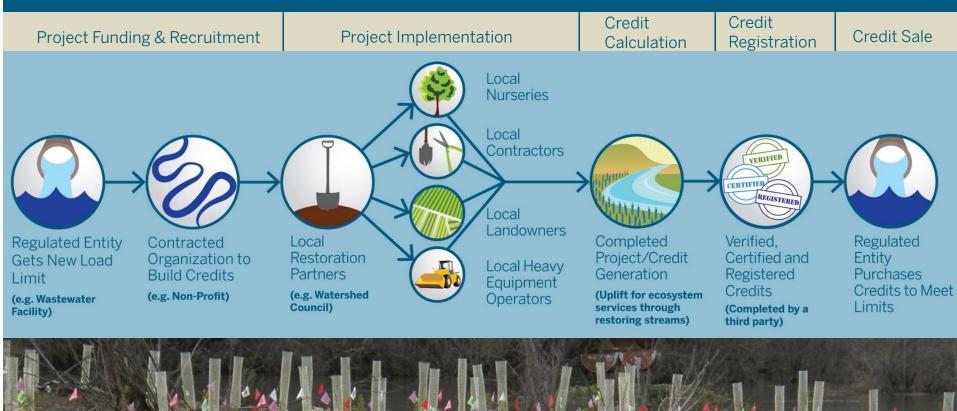
Long-term monitoring:


- → Plant survival
- → Species diversity
- → Invasive species cover
- → Photo point monitoring

Ongoing maintenance:

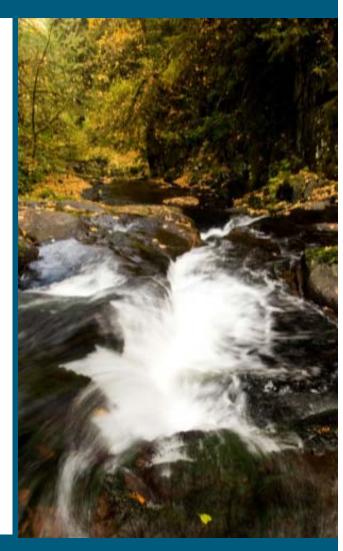
- → Invasive species control
- → Plant replacement
- → Irrigation where necessary

Verification & Registration



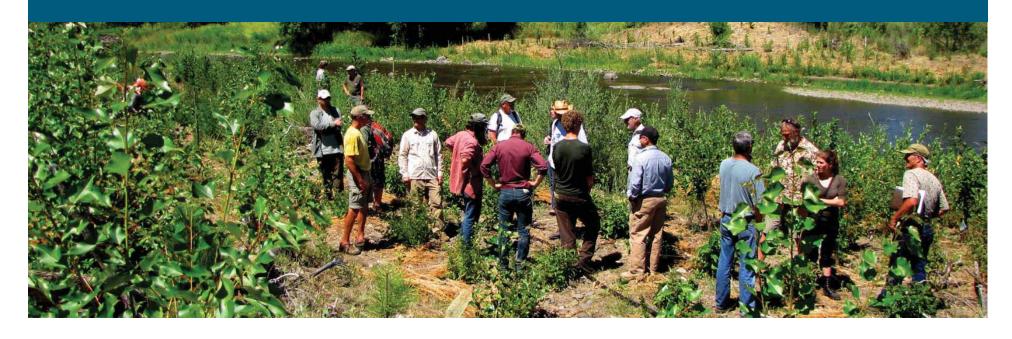
Yearly Monitoring

Transaction Process



4 Restoration Keys for Communities

- → Economic: Restoration compliance generally far less expensive than technological solutions, spread over many years
- → Social: Restoration keeps funding in the local community, creating jobs
- → Ecological: The restoration solution converts point-source investment into non-point source projects, with multiple environmental benefits
- → Turn-key: Cities only pay for certified credits


Resources

→ Uplift Report

Document: http://www.thefreshwatertrust.org/2014-uplift-report/ Video: http://youtu.be/iXWnCOzjtAo

- → Regional Recommendations http://willamettepartnership.org/success-stories/regional-recommendations-water-quality-trading/
- → EPA Toolkit http://water.epa.gov/type/watersheds/trading/WQTToolkit.cfm
- National Water Quality Trading Alliance http://www.wqtalliance.com/
- → National Network on Water Quality Trading http://willamettepartnership.org/national-network-on-water-quality-trading
- → WEFTEC workshop, September 27, 2015 Quantifying Restoration for Clean Water Act Compliance: Common Ground for Water Quality Trading and Stormwater Management

Questions?

Alex Johnson

Senior Freshwater Solutions Director The Freshwater Trust alex@thefreshwatertrust.org 503-222-9091 x18