

City of Raleigh Water Supply Planning Update

Upper Neuse River Basin Association June 17, 2015

Water Supply Planning Area

Potential Range of Population Projections

ST STOLEN AND MADE AND STOLEN AND ADDRESS OF ADDRESS OF

Demand Projections

Historic Water Resource Planning

- 1971 Identified as a possible site for water supply reservoir by Moore/Gardner, Edwards, Piatt and Wooten Engineers Task Force;
- 1986 Evaluated for drinking water in "East Wake County Water Supply Alternatives and Analysis" by Peirson and Whitman, Inc.;
- 1987 Watershed zoned for water supply purposes;
- 1988 EMC reclassified watershed to today's WS-II classification
- 1989 Phase I Preliminary Engineering Services Report for the Proposed Little River Reservoir;
- 1990 Environmental Assessment Phase 1 Report;

- 1993 Draft Environmental Assessment prepared to evaluate project feasibility;
- 1995 Wake County began reservoir property acquisition;
- 2000-2006 Raleigh and other Wake County Municipalities merge utilities;
- 2006-2015 Raleigh undertakes new water resource development though Federal and State permitting processes.

Processes, Challenges and Hurdles

Federal

- Clean Water Act
- The National Environmental Policy Act
- The Endangered Species Act
- EPA Region 4 Guidelines on Water Efficiency Measures for Water Supply Projects
- National Case Law
- Well Established Opposition or Guidance Groups

State

- State Delegation of Components of the Clean Water Act
- Interbasin Transfer Law & Rule
- L&S Water Power v. Piedmont Triad Rural Water Authority decision
- Ecological Flows and the EFSAB Recommendations
- Well Established Opposition or Guidance Groups

Most Difficult Challenge and Hurdle?

Complexity!

- Complexity brings grid lock, accidental or intentional;
- Complexity brings confusion for decision makers and the public;
- Complexity brings "Analysis Paralysis";
- Complexity brings opportunity for opponents to derail projects that society would otherwise consider reasonable;
- It brings <u>uncertainly</u>...

Projected Water Resource Needs

	2011	2020	2030	2040	2050	2060
Surface Water Supply, mgd	77.3	77.3	77.3	77.3	77.3	77.3
Reduced Demand, mgd		1.9	4.5	8.7	14.4	15.2
Service Area Demand, mgd	51.9	64.4	78.2	91.3	102.7	115.00
Future Need, mgd		0.0	13.8	14	25.4	37.7

Demand reductions acquired from water efficiency and reclaimed water utilization off setting new demand.

Water, Water Everywhere....?

Illustration of Water Supply Usage Impact on Clayton Flow Target

Reallocation Alternative

Source: Raleigh Quarry Storage with Neuse River Intake below Richland Creek

Source: River Intake Above Neuse River WWTP

River Intake Above Neuse River WWTP

Area shaded in green shows potential extent of water supply watershed overlay

Legend

Jordan Lake Partnership and TRWSP

Triangle Regional Water Supply

One means to acquire water from Jordan Lake

Jordan Lake

Falls Lake Reallocation Impacts

- Limited negative impacts anticipated for reallocation
- Does reallocation pose evident water quality impacts?

Falls Lake EFDC Model

- Developed by NCDENR DWR to aid in developing nutrient management strategy
- Completed in 2009 under guidance of Falls Lake Technical Advisory Committee
- Simulating Chl-a concentrations was key purpose

Falls Lake Nutrient Response Model

- Chl-a goal:
 - Less than 40 µg/L 90% of the time
- Focused primarily on nutrient inputs from tributaries

Falls Lake EFDC Model

Simulation Scenarios

Reservoir Hydrology Impacts

Inflow Variability vs. Withdrawal Variability

40/77% Nutrient Reductions at NEU013B

40/77% Nutrient Reductions at NEU013B

Chl-a Exceedance Probability

A4 with Nutrient Reductions

Falls Lake EFDC Model

40/77% Nutrient Reductions at WQ4-Lower Lake

A.4 Allocation +/- 2% Outflow

40/77% Nutrient Reductions at WQ4-Lower Lake

Base A4 vs A4 with 2% Outflow Increase

Base A.4 Simulation

A.4 + 2% Outflow

40/77% Nutrient Reductions at NEU013B

40/77% Nutrient Reductions at NEU013B

