Center for WATERSHED PROTECTION

UNRBA Nutrient Credit Development Project PFC Meeting March 2016

Summary of Status for Credit Development (Task 1)

Task 1 Status Update

- Meeting (February 19th) with DWR Planning and DEMLR Stormwater
 - Project coordination across groups
 - Agency processes and impacts to credits project
- Continued progress on priority measures
- Continued participation in Stormwater Control Measures Crediting Team

Credit Development Process

- Establish technical workgroup
 - Agency staff (DEQ Planning and Stormwater)
 - Subject matter experts (e.g., NCSU Stormwater)
- Compile published nutrient removal data and develop preliminary methods and analysis
- Work with technical workgroup to refine technical approach
- Draft the practice standard document
- Release for review by PFC, NSAB, WOC, SCM CT, etc.
- Work with DEQ to finalize based on input

Review Schedule

- DWR approval process requires review by the NSAB
- Distribute practice standards 2 to 3 weeks before PFC and NSAB meetings
- Present credits at PFC and NSAB meetings
- Comments from reviewers due 1 week after NSAB meeting
- Finalize draft and release for informal 30-day public comment
- DEQ finalize and issue final approval

Practice	Technical Approach	Practice Standard (Credit Document)	Broader Review	Percent Complete
Level spreader filter strips d.v.	Finalized	Released for broad review Feb. 22 nd	Comments due Mar 18 th	95
Bioretention d.v.	Finalized	Released for broad review Feb. 22 nd	Comments due Mar 18 th	95
Infiltration devices	Finalized	To be released Mar 21 st	Comments due April 8 th	90
Soil improvement and PANM	Finalized	To be released Mar 21 st	Comments due April 8 th	90
Livestock exclusion	Nearly final	Planned release in April	Comments due in May	80
Land conservation	In development	Planned release in April	Comments due in May	60
Buffer restoration (urban and rural developed areas)	In development	Planned release in May	Comments due in June	50
Removal of illicit discharges	Awaiting local data	Planned release in May	Comments due in June	10

Task 2: Status of Work for Credit Calculation Tool

Task Force for Tool Development

- Further tool development is on hold until second half of 2016
 - More information on Rules Revisions and reporting requirements
 - Integrate credit development from Task 1 for non structural practices
 - Assess the need for supplemental features as we progress
- Agency continues to work through JFSAT issues
 - Most changes are associated with fixing bugs and calculations
 - Should not affect the read in functions of the UNRBA Credit Tool
- Agency beginning technical discussions on combining the JFSAT and StormEZ tools
 - We will continue to track these discussions and their potential impacts to the UNRBA Credit Tool

Bioretention Design Variants

Technical Workgroup

- NCDEQ Division of Water Resources, Planning:
 - Rich Gannon, John Huisman, Trish D'Arconte, and Amin Davis
- NCDEQ Division of Energy, Mineral and Land Resources, Stormwater:
 - Annette Lucas
- NCSU-BAE Stormwater Engineering Group:
 - Andrew Anderson, Erin Carey, and Bill Hunt

Minimum Design Criteria and Technical Guidance

- Pursuant to Minimum Design Criteria and related requirements of rules 15A NCAC 2H .1000 (http://portal.ncdenr.org/c/document_library/get_file?uuid=021 2634d-9aa9-4301-a481-1d6c57930c44&groupId=38334), and
- Guided by Chapter 12 of the NC BMP Design Manual
- Crediting requires assumed factor of safety in HyPer Tool of 10 percent

Design Variants for Bioretention Cells

- Soil media depth
- Inclusion of internal water storage (IWS)
- Average surface ponding depth
- Surface storage ratio (i.e., storage volume relative to design storm volume)
- Drainage coefficient (default is 2 ft/d)

Crediting Method

- Input design variants into HyPer Tool
- Record hydrologic values from the HyPer Tool
- Enter site information into JFSAT
- Select one of the "Custom Bioretention" options in JFSAT: with or without IWS (select "Other Custom BMP" until JFSAT functions are restored)
 - Enter hydrologic values from HyPer Tool on the BMP Characteristics tab
 - Use default nutrient EMCs for bioretention with or without IWS
 - With IWS: 0.81 mg-N/L and 0.1 mg-P/L
 - Without IWS: 1.08 mg-N/L and 0.13 mg-P/L
- JFSAT outputs nutrient loads pre and post BMP implementation

HyPer Tool

- Developed by the NCSU-BAE Stormwater Group (http://www.bae.ncsu.edu/stormwater/downloads.htm)
- Model is based on output from over 400 DRAINMOD simulations
- Predicted water budgets for bioretention match field observations to within 10 percent

Input Design Variants in HyPer Tool

DESIGN INPUT PARAMETERS

Units

- Hydrologic Soil Group
- Soil Media Depth
- Depth to IWS
- Average Surface Ponding
- Surface Storage Ratio
- Drainage Coefficient
- BRC Area : Drainage Area Ratio
- Factor of Safety

English	
В	
3	ft
1	ft
9	in
75%	relative to WQ volume
2	ft/d
8.3%	
10 %	

Record Hydrologic Output from HyPer Tool

Enter Data into JFSAT (Project Information)

Jord	an/Falls Lake St	ormwater Nuti	rient	
	Load Accou	ntíng Tool		
	Version	n 3.0		
	Date:	February 23, 2016		
Introduction	Project Name:	bioretention example	Project Info	
	Development Area (ft ²):	23,000	Clear All Entries	
Watershed Characteristics	Physiographic Region: Regional Map	Piedmont		
Characteristics	Project Latitude Coordinates:	N		
PAAD	Project Longitude Coordinates:	W		
BMP Characteristics	Precipitation Location: Precip Map	Butner	Import An	
	Project Designer:		Existing Project	
Individual BMP	Contact Phone Number/Email:			
Summary	Project Description:			
Overall Summary			Help & Documentation	

Enter Data into JFSAT (Watershed Characteristics)

WATERSHED LAND USES					
			1	1	
	TN	ТР	Pre-	Post-	
	EMC	EMC	Development	Development	
	(mg/L)	(mg/L)	(ft ²)	(ft ²)	
COMMERCIAL					
Parking lot	1.44	0.16	23,000	21,225	
Roof	1.08	0.15			
Open/Landscaped	2.24	0.44			
Open water					
LAND TAKEN UP BY BMPs	1.08	0.15		1,775	

LAND USE AREA CHECK			
Total Development Area Entered (ft ²):	23,000		

Enter Data into JFSAT (BMP Characteristics)

	BMP #1 Custom Bioretention with IWS			
Type of BMP:			← Select	
Select predominant hydrologic soil group (HSG) for the location of the BMP.	В		← Select	
Description of Custom BMPs	BR w ISW, SMD3, DIWS1, ASP9, SSR75%, DC2, FOS10%		Enter	
Under- or Over-sized Percentage:			description	
Hydrologic Values (Value must be entered by	Overflow %:	% Treated	Enter	
user for Water Harvesting or Custom BMPs)	9%	31%	hydrologic	
Nutrient Effluent EMC Values (Value must be entered by user for custom BMPs)	TN EMC (mg/L):	TP EMC (mg/L):	values from HyPer Tool	
	0.81	0.1	Defaults	

JFSAT Outputs Nutrient Loads Pre and Post BMP (Overall Summary)

Development Summary						
	Pre-Development Conditions	Post-Development Conditions	Post-Development w/ BMPs			
Percent Impervious (%)	100.0%	100.0%	100.0%			
Annual Runoff Volume (c.f.)	85,470	85,470	34,327			
Total Nitrogen EMC (mg/L)	1.44	1.41	0.95			
Total Nitrogen Loading (lb/yr)	7.69	7.54	2.02			
Total Nitrogen Loading (lb/ac/yr)	14.56	14.27	3.83			
Total Phosphorus EMC (mg/L)	0.16	0.16	0.11			
Total Phosphorus Loading (lb/yr)	0.85	0.85	0.24			
Total Phos. Loading (lb/ac/yr)	1.62	1.61	0.46			

Nitrogen Credit = 7.69 lb/yr - 2.02 lb/yr = 5.67 lb/yrPhosphorus Credit = 0.85 lb/yr - 0.24 lb/yr = 0.61 lb/yr

Questions on Bioretention Design Variants?

Level Spreader Filter Strip Design Variants

Technical Workgroup

- NCDEQ Division of Water Resources, Planning:
 - Rich Gannon, John Huisman, Trish D'Arconte, and Amin Davis
- NCDEQ Division of Energy, Mineral and Land Resources, Stormwater:
 - Annette Lucas and Bradley Bennett
- NCSU-BAE Stormwater Engineering Group:
 - Andrew Anderson, Erin Carey, and Bill Hunt

Minimum Design Criteria and Technical Guidance

- Pursuant to Minimum Design Criteria and related requirements of rules 15A NCAC 2H .1000 (http://portal.ncdenr.org/c/document_library/get_file?uuid=021 2634d-9aa9-4301-a481-1d6c57930c44&groupId=38334), and
- Guided by Chapter 8 of the NC BMP Design Manual
- Minimum width of 10 ft
- Minimum ratio of length to design flow of 10 ft/cfs

Design Variants for Level Spreader Filter Strip

- Width (W), (i.e., flow path)
- Ratio of the length in ft (L) to the design flow in cfs (Q)
 - Q = CIA
 - Q = design flow (cfs)
 - C is the runoff coefficient (unitless)
 - I = 0.75 in/hr (new MDC)
 - A = drainage area (ac)

[See description of the Rational Method in Ch. 3 of the NC BMP Design Manual]

Crediting Method

- Select the appropriate %Volume Reduction from the LSFS design variants figure
- Calculate: % Treated = 100% %Volume Reduction
- Select "Other Custom BMP" option in JFSAT
 - Enter hydrologic values (% Treated and Overflow % = 0)
 - Use default nutrient EMCs for LSFS (1.09 mg-N/L and 0.16 mg-P/L)
- JFSAT outputs nutrient loads pre and post BMP

Enter Data into JFSAT (BMP Characteristics)

	BM	IP #1	
Type of BMP:	Other Custom BMP		Select
Select predominant hydrologic soil group (HSG) for the location of the BMP.	с		← Select
Description of Custom BMPs	LSFS: W= 20 ft and L/Q = 20 ft/cfs		Enter description
Hydrologic Values (Value must be entered by	Overflow %:	% Treated	Enter
user for Water Harvesting or Custom BMPs)	0%	80%	← hydrologic
Nutrient Effluent EMC Values (Value must be	TN EMC (mg/L):	TP EMC (mg/L):	values
entered by user for custom bivies	1.09	0.16	Enter defaults

JFSAT Outputs Nutrient Loads Pre and Post BMP

Development Summary					
	Pre-Development Conditions	Post-Development Conditions	Post-Development w/ BMPs		
Percent Impervious (%)	100.0%	100.0%	100.0%		
Annual Runoff Volume (c.f.)	85,470	85,470	68,407		
Total Nitrogen EMC (mg/L)	1.44	1.44	1.09		
Total Nitrogen Loading (lb/yr)	7.69	7.67	4.65		
Total Nitrogen Loading (lb/ac/yr)	14.56	14.52	8.80		
Total Phosphorus EMC (mg/L)	0.16	0.16	0.16		
Total Phosphorus Loading (lb/yr)	0.85	0.85	0.68		
Total Phos. Loading (lb/ac/yr) 1.62 1.62 1.29					

Nitrogen Credit = 7.69 lb/yr - 4.65 lb/yr = 3.04 lb/yrPhosphorus Credit = 0.85 lb/yr - 0.68 lb/yr = 0.17 lb/yr

Questions on LSFS Design Variants?

