

UNRBA Monitoring Program Development and Implementation

BOD Meeting Jan 15, 2014

January 15, 2014

Monitoring objectives

- Falls Lake EFDC Model improvement
- Demonstrate response of Falls Lake chlorophyll a and TOC to changes in nitrogen and phosphorus concentrations and loading
- Determine Jurisdictional Loading
- Regulatory compliance
- Link water quality and designated uses
- Prioritize BMP implementation
- Support regulatory options

Updates

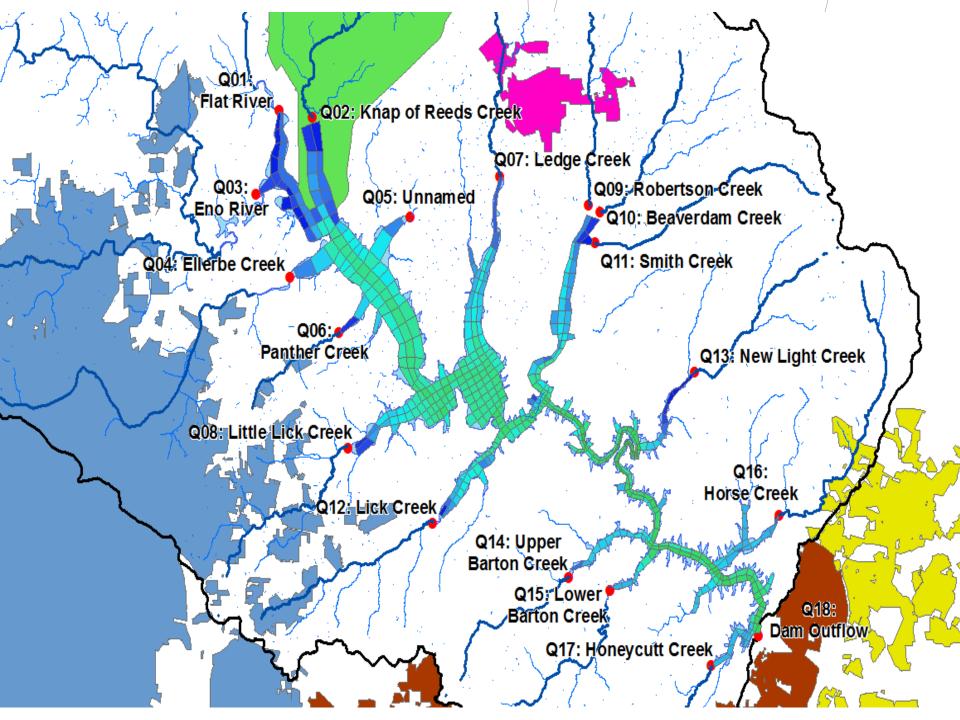
- Main focus of current analyses is to use and create models that can predict water quality or flow
 - Develop adaptive monitoring plan
 - Reduce future monitoring effort where possible
 - Optimize the level of monitoring effort and cost

Updates

- Monitoring plan development and optimization:
 - How sensitive is DWR's Falls Lake model to changes in inputs?
 - How does monitoring frequency or flow data time step influence loading calculations?
 - ID the "best" existing or new model/method to estimate flow in areas without flow gages.
 - Can existing models/methods estimate water quality at locations or dates without data?
 - Are there redundancies in existing monitoring programs?
 - Update on UNRBA database status.

Path Forward for Remainder of Fiscal Year 2014

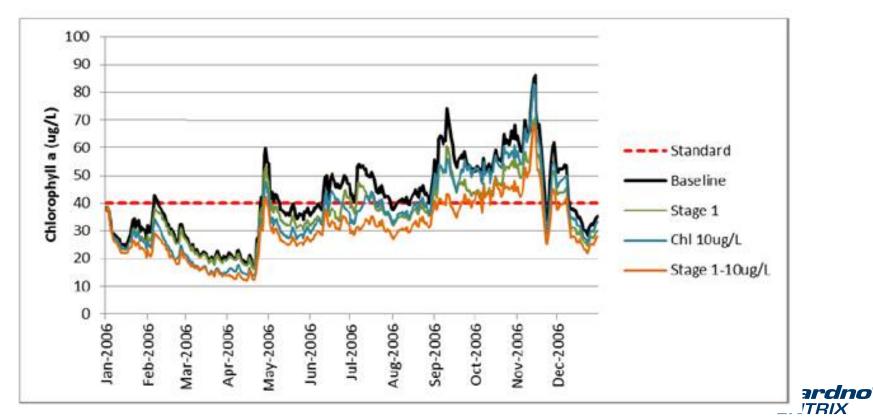
- Recommended flow estimation approach to PFC at end of January
- Falls Lake model sensitivity analysis to PFC at end of January
- Water quality estimation approaches to PFC at end of February
- Draft Monitoring Plan to PFC in March
- Complete contracts with monitoring contractors in March/early April
- Begin monitoring in May


Monitoring plan components reviewed and approved by DWR

- UNRBA Quality Assurance Project Plan (monthly submittals to DWR)
 - Describes entire UNRBA monitoring program
 - Identifies acceptable field and laboratory methods and procedures
 - Documents data accuracy requirements
 - Includes methods for verifying data quality
- Modeling Framework to DWR in early February
 - Identifies proposed model revisions
 - Describes how the monitoring program will provide the data to support Falls Lake model updates

Falls Lake EFDC Model Sensitivity Analyses

How sensitive is the Falls Lake EFDC model to changes in inputs?


- Model is currently calibrated with large inputs of chl a coming from the tributaries.
 - Even if we reduce the chl a inputs and rerun the model, its calibration affects how the model will respond
 - The sensitivity of an improved and recalibrated model is unknown at this time, but is unlikely to show the same sensitivity to nutrient inputs as the existing model
 - The upper portions of Falls Lake are most sensitive to changes in nutrient inputs

EFDC Sensitivity – Predicted ChI a at I-85 with ChI a inputs reduced to 10 ug/l, with and without Stage I reductions in TN and TP (20%↓TN, 40%↓TP)

Shaping the Future

How sensitive is the Falls Lake EFDC model to increased nutrient loading?

- Several scenarios were run that increased individual tributary loads and groups of tributaries by 50 percent
- Compared model output with increased loads to baseline predictions at I-85, Highway 50, and the Dam.

Flow Monitoring Optimization

Is there a cost effective tool available to predict flows in areas where we do not have flow gages?

- Methods/Models under evaluation
 - OASIS, WARMF, Basin proration, RTI Waterfall
 - USGS Archfield method
- Identifying model strengths and limitations
- Comparing flow predictions from several methods at gaged locations
- Compare basin proration method to selected method at 1-2 ungaged locations

Water Quality Monitoring Optimization

How can we use existing data and available supporting information to predict water quality or reduce level of monitoring effort?

- Statistical Models Under Development
 - Similar Stations Model
 - Can be used to determine relationships within and across subbasins
 - Upper Neuse WQ Model
 - Offers significant prediction flexibility and can be used for monitoring optimization
 - Identifies locations that behave differently than expected
 - Sampling Optimization Model -
 - Prioritize sampling frequency

