

Falls Lake WARMF Model Update

Presentation to the Upper Neuse River Basin Association (UNRBA) July 23, 2015

Laura Weintraub Derek Schlea Scott Bell

Overview

- ["] Objectives of model update, scope of work
- ["] Spatial changes to model
- Updated calibration
- Uncovered observations with septic systems and sand filters
- ["] Status of scenario analysis
- Considerations for future use of model

WARMF Modeling Tasks

- ["] Transitioned model to the latest version of WARMF
- ["] Redelineated Ellerbe and Little Lick Watersheds
- ["] Extended simulation period through December 2013
 - . Updated land cover and septic systems inputs with more recent data
 - . Calibrated Little Lick Creek and recalibrated Ellerbe Creek watersheds
- " Documented all work in a technical memo

Spatial Scope of Model

 \bigcirc

WARMF Version Transition

["] Version 6.3 (used by NCDENR and Durham) to Version 6.5

- . Improved algorithm for calculation of evapotranspiration from catchments resulted in higher evapotranspiration and lower streamflows
 - ⁷ Adjusted model input parameters during calibration to decrease evapotranspiration
- . Differences in loading output attributed to septic systems
 - [~] Version 6.5 addressed an error in load source tracking

Version 6.5 to Version 6.7c

- . Done to accommodate resegmentation changes
- . Differences relate to graphical user interface, no changes algorithms
- . Confirmed model output generated between versions was essentially identical for all hydrology and water quality constituents

Model Redelineation

- ["]Catchments and rivers refined to higher spatial resolution and better alignment with water quality sampling stations
- External subwatershed boundaries modified to correspond with delineation used for the Watershed Improvement Plan

Model Database Update: Extended Input Data for 2008-2013

- *Land Cover*
 - . Combination of 2011 NLCD layer and 2014 NCDOT road layer
- " Meteorology
 - Extended 1 existing NCDC station
 - 5 new stations: 4 USGS stations and 1 N. Durham WRF station (NC Climate Center)
- Atmospheric deposition
 - Extended data files for stations used in original model application
- Point source inputs
 - . Durham WRF
 - . Septic systems, sand filters, and SSOs 2013 inventory

Flow and Water Quality Sampling Stations

Flow Stations

Water Quality Sampling Stations

- " Observed flow stations on Little Lick Creek developed from drainage area relationship (DAR)
 - Observed water quality
 - . 8 stations in Ellerbe Creek
 - . 2 stations in Little Lick Creek

Hydrology Calibration: Parameters

" Primary parameters adjusted

- . Evaporation magnitude and skewness
- . Fraction impervious and detention storage
- . Soil horizontal and vertical conductivities
- . Soil porosity and field capacity
- . Initial soil moisture content
- Consistent with key parameters adjusted during calibration (Herr and Chen 2012)
- ["] Visual Comparisons
 - . Daily time series and scatter plots
 - . Monthly time series plots and annual bar charts
- ["] Statistical Comparisons
 - . Calibration targets based on Donigian 2000, Moriasi et al. 2007, Parajuli et al. 2009

 \bigcirc

Hydrology Calibration: Ellerbe Creek

				То	tal Mo	onthly	/ Stre	amflo	w V	olum	e - Ell	erbe	Cree	k at	Gler	n Rd					
	10,000						•	Obse	rved	-	<-−Sii	nulate	ed								_
	9,000			•			•														_
	8,000	-																			_
	7,000	-			•		-/														_
et)	6,000								2										7		-
re-fe	5,000	+Å			^				Ĭ –										Æ		-
w (ac	4,000		<	X	A			7	A			-			•						
mflo	3,000						+					~				Л			ŶÒ		7
itrea	2,000	1		7				-7	â	X.				2		2		0			
0	1,000	Ŭ		•		0	•			~		U	•		01		•				
	0	8	8	- 80	- 60	- 60	- 60	- 01	- 01	10	10-11	: =	Ξ	Ξ	12 -	12 -	12 -	13 -	13-	13 -	13
		Jan-(Mar-()-un(Sep-(Dec-I Mar-()-un(Sep-(Mar-1	Jun-1	Sep-	Dec-'	Jun-	Sep-1	Dec-	Mar-	Sen-	Dec-1	Mar-1	Jun-	Sep-	Nov-

	Statistic	Ellerbe Creek at	Ellerbe Creek at Club Blvd.	
	otatistic	Glenn Rd.		
	Count	6	6	
	R-Squared	0.93	0.88	
Annual	Nash-Sutcliffe Efficiency	0.93	0.83	
	P-Bias	0.25	-6.15	
	Relative Percent Difference	-0.01	6.10	
	Count	72	65	
	R-Squared	0.83	0.75	
Monthly	Nash-Sutcliffe Efficiency	0.83	0.72	
	P-Bias	0.25	-6.15	
	Relative Percent Difference	3.64	10.52	
	Count	2192	1979	
	R-Sq	0.63	0.65	
Daily	Nash-Sutcliffe Efficiency	0.63	0.65	
	P-Bias	0.25	-6.15	
	Relative Percent Difference	9.43	3.24	

 \bigcirc

Hydrology Calibration: Little Lick Creek

	Statistic	Little Lick Creek outlet	Little Lick Creek at Stallings Rd.	
	Count	6	6	
	R-Squared	0.42	0.43	
Annual	Nash-Sutcliffe Efficiency	0.34	0.35	
	P-Bias	-1.82	-1.33	
	Relative Percent Difference	3.29	2.82	
	Count	65	65	
	R-Squared	0.69	0.70	
Monthly	Nash-Sutcliffe Efficiency	0.62	0.63	
	P-Bias	-1.82	-1.33	
	Relative Percent Difference	-7.46	-11.03	
	Count	1979	1979	
	R-Sq	0.56	0.61	
Daily	Nash-Sutcliffe Efficiency	0.56	0.61	
	P-Bias	-1.82	-1.33	
	Relative Percent Difference	27.31	-24.40	

 \bigcirc

Water Quality Calibration

- ["]Split developed land cover into separate pervious and impervious categories
 - . Applied higher application rates to pervious and lower to impervious
 - . Resolved issues with unrealistic nutrient spikes in upper, highly impervious catchments
- Primary parameters adjusted
 - . Sediment detachment velocity coefficients and initial bed sediment depth
 - . Nutrient application rates on developed land uses
 - . Initial soil concentrations
 - . Soil adsorption coefficients
- ["] Constituents calibrated: TSS, TN (NO₃, NH₃, TKN), TP
- Visual Comparisons
 - . Daily time series
 - . Monthly box-and-whisker plots
 - . Annual bar charts
- ["] Statistical Comparisons
 - . Calibration targets based on Donigian 2000

Water Quality Calibration: Ellerbe Creek - TSS

 \bigcirc

Water Quality Calibration: Ellerbe Creek - Nitrogen

Station	Count	Avg. TN, mg/L (data)	Avg. TN, mg/L (model- paired)	Avg. TN, mg/L (model-all)	RPD
EL1.9EC	148	3.66	2.87	2.95	-25%
EL10.7EC	59	0.70	0.95	0.83	23%
EL5.5GC	36	0.77	0.80	0.79	-3%
EL5.6EC	60	0.82	0.87	0.74	0%
EL7.1SEC	48	1.05	1.25	0.87	-7%
EL7.9EC	71	0.67	0.81	0.78	11%
EL8.1GC	60	0.88	0.82	0.82	-10%
EL8.5SEC	52	1.56	0.69	0.90	-56%

 \bigcirc

Water Quality Calibration: Ellerbe Creek - Phosphorus

Station	Count	Avg. TP, mg/L (data)	Avg. TP, mg/L (model- paired)	Avg. TP, mg/L (model-all)	RPD
EL1.9EC	149	0.16	0.15	0.18	2%
EL10.7EC	59	0.12	0.13	0.09	13%
EL5.5GC	36	0.11	0.09	0.10	-9%
EL5.6EC	60	0.09	0.08	0.08	-8%
EL7.1SEC	48	0.12	0.15	0.12	14%
EL7.9EC	72	0.09	0.08	0.09	0%
EL8.1GC	60	0.11	0.08	0.11	-30%
EL8.5SEC	51	0.31	0.09	0.12	-59%

 \bigcirc

Summary of WARMF Calibration Update

- Re-calibrated Ellerbe Creek
 - . Hydrology "good" to "very good" both stations
 - . TSS "fair" to "very good"
 - . Nutrients "good" to "very good" most stations
- " Calibrated Little Lick Creek
 - . Hydrology "fair" to "good" both stations
 - . Water Quality "good" to "very good" for both stations, all constituents

Loading Summary from Updated WARMF 10/1/2007-12/31/2013 simulation period

Findings Related to Septic Systems

- Simulations of WARMF V6.3 and V6.5 revealed differences in loading output attributed to septic systems
 - . Systech verified mass balance code related to septic systems between versions is consistent
 - . Source tracking code in V6.3 had errors, over-estimated the load attributed to septic systems
 - . V6.5 correctly accounts for septic system loading
- ["] Loads attributed to septic systems reported in 2009 NCDENR report are higher than actually computed by the model
 - . Could be misleading if used for basis of management decisions

Watershed	TN Load from Septic Systems	TP Load from Septic Systems	
Ellerbe Creek	4%	17%	
Eno River	28%	12%	Source: NCDENR, 2009

Findings Related to Septic Systems (continued)

- WARMF septic loading output is correct, but only reflects loading introduced during the simulation period
 - . WARMF does not attribute a portion of legacy nutrients in soil to be from septics
- Does not simulate "short-circuiting" loads from failing septic systems to streams
- Septic system loads of TN and TP account for ~10% of the total inflow loads to catchments in Little Lick Creek and majority of load is attenuated
 - ~98% attenuation of TN, ~95% attenuation of TP
 - . Septic system is ~1.4% of total TN load to lake and ~4.8% of total TP load to lake
- WARMF suggests that removal of <u>functioning</u> septic systems is not a priority strategy for reducing loads from the Little Lick Creek watershed to Falls Lake

Findings Related to Sand Filters

- Onsite wastewater
 treatment systems that
 pass septic tank effluent
 through a sand filter bed
 for additional attenuation
 of solids and nutrients
- Effluent <u>may</u> discharge to surrounding in situ soil or directly to a ditch, creek, or stream

Good things are happening in Durham

www.durhamnc.gov

Findings Related to Sand Filters

" Representation in WARMF

- . Used City of Durham GIS data to determine number sand filters per catchment
- . WARMF implementation consistent with NCDENR model (2009)
 - ²⁷ 50% functioning subsurface discharge, lumped with septic in top soil layer
 - 50% poorly functioning point source discharge to catchments (intended to be to the land surface)
- ["] LimnoTech verified with Systech that WARMF applies catchment point sources to top soil layer as a <u>subsurface</u> discharge, not to land surface
 - . Currently, all sand filter loads are essentially applied as a subsurface discharge (similar to septic systems)
 - . Load attenuation is similar to septic systems: ~98% for N and ~95% for P
 - . Under represents load from poorly functioning systems

Findings Related to Sand Filters (continued)

- Potential to adjust the WARMF model inputs for poorly functioning sand filters to better reflect observed conditions
 - Apply a portion as point sources direct to surface water
- Would be necessary to determine appropriate assumption for % of sand filters discharging directly to surface water
 - . In 2008, 50% assumption was based on little information
 - Recent efforts to target and address failing systems, actual failing likely much lower
- City of Durham recommended keep current configuration in WARMF but consider revisiting during model changes for the Eno River

Summary of WARMF Model Improvements

- ["] Extended database and model through 2013
- " Re-calibrated Ellerbe Creek
- " Calibrated Little Lick Creek
- Currently in use to support Little Lick CreekWatershed Improvement Plan

Modeling Watershed Improvements with WARMF in Little Lick Creek

Examining stormwater control measures (SCMs), ordinance for land redevelopment, septic system removal, stream restoration

- 1. Baseline existing conditions for land use / land cover and SCMs
- 2. Future land cover
- 3. Future land cover with increased stormwater control: simulate in SWMM, then translated to WARMF
 - Additional Stormwater Performance Standards for newly developed land
 - Additional stormwater control measures with selected SCM retrofits
- 4. Stream restoration projects implemented
- 5. Other actions: onsite wastewater system modifications, land conservation

 \mathbf{O}

6. Combination scenarios

Consideration for Future Use of Broader Falls Lake WARMF Model

- ["]Several model inputs tailored for Durham region during calibration update
 - . Global parameters for evaporation, canopy cover processes
 - Tailored developed land cover categories to separate pervious and impervious fractions
- Several inconsistencies or apparently erroneous inputs discovered in the original model
 - . N. Durham WRF dissolved oxygen input time series, non-zero nitrate adsorption, inconsistent land application rates for select catchments
- ["] LimnoTech recommends a more thorough review and evaluation of model inputs in areas outside of Ellerbe Creek and Little Lick Creek to improve the representation of real-world processes and enhance the model's predictive capabilities
- ["] Potential need for recalibration effort in other watersheds

Hydrology Calibration: Targets

- Visual Comparisons
 - . Daily time series and scatter plots
 - . Monthly time series plots and annual bar charts
- ⁷ Statistical Comparisons
- " Complete results documented in technical report

Performance	R ² - Monthly Flows	NSE for	PBIAS for	Percent Difference
Rating		Streamflow	Streamflow	Between
	(Donigian 2000)		(14-1	Simulated and
		(Parajuli et al. 2009)	(Ivioriasi et al. 2007)	Recorded Values
				(Donigian 2000)
Excellent		> 0.90		
Very good	> 0.85	0.75 – 0.89	$PBIAS < \pm 10$	<10
Good	0.75-0.85	0.50 – 0.74	±10 < PBIAS < ±15	10-15
Fair/Satisfactory	0.65-0.75	0.25 – 0.49	±15 < PBIAS < ±25	15-25
Poor	0.55-0.65	0.00 - 0.24		
Unsatisfactory	< 0.55	< 0.00	$PBIAS > \pm 25$	

 \bigcirc

Water Quality Calibration: Targets

- Wisual Comparisons
 - . Daily time series
 - . Monthly box-and-whisker plots
 - . Annual bar charts
- ["] Statistical Comparisons

["] Complete results documented in technical report

	Percent Difference Between Simulated and Recorded Values						
Parameter	(Donigian 2000)						
	Very Good	Good	Fair				
Hydrology / Flow	< 10	10 - 15	15 – 25				
Sediment	< 20	20 - 30	30 - 45				
Water Temperature	< 7	8 - 12	13 - 18				
Water Quality / Nutrients	< 15	15 - 25	25 - 35				

Water Quality Calibration: Little Lick Creek - TSS

 \bigcirc

Water Quality Calibration: Little Lick Creek - Nitrogen

 \bigcirc

Water Quality Calibration: Little Lick Creek - Phosphorus

 \bigcirc